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Abstract— Humanoid whole-body control requires adapting
to diverse tasks such as navigation, loco-manipulation, and
tabletop manipulation, each demanding a different mode of
control. For example, navigation relies on root velocity or po-
sition tracking, while tabletop manipulation prioritizes upper-
body joint angle tracking. Existing approaches typically train
individual policies tailored to a specific command space, limiting
their transferability across modes. We present the key insight
that full-body kinematic motion imitation can serve as a
common abstraction for all these tasks and provide general-
purpose motor skills for learning multiple modes of whole-body
control. Building on this, we propose HOVER (Humanoid Ver-
satile Controller), a multi-mode policy distillation framework
that consolidates diverse control modes into a unified policy.
HOVER enables seamless transitions between control modes
while preserving the distinct advantages of each, offering a
robust and scalable solution for humanoid control across a wide
range of modes. By eliminating the need for policy retraining
for each control mode, our approach improves efficiency and
flexibility for future humanoid applications.

I. INTRODUCTION

Humanoid is a versatile form factor that supports a wide
variety of robotic tasks and applications, including bimanual
manipulation [1–3], bipedal locomotion [4–7], and agile
whole-body control [8–14]. While showing impressive re-
sults, each of these efforts uses a different formulation for
whole-body control based on the need for their specific
task and scenario. Some use root velocity tracking [5, 6]
to support locomotion, some choose joint angle tracking
[12, 13] to enable expressive movements, and others use
kinematic tracking of selected body keypoints [9, 10] to
support teleoperation. Although these approaches are similar
in terms of the end goal of motion tracking, they require
task-specific controller interface and rewards design. This
not only makes the development process repetitive and time-
consuming, but also limits the versatility of the resultant
whole-body controller. For instance, a robot performing
bipedal locomotion on uneven terrain using root velocity
tracking [5, 6] would struggle to seamlessly switch to a task
requiring precise bimanual manipulation, where joint angle
or end-effector tracking [2, 12, 13] might be necessary. These
task-specific dependencies limit versatility, as each controller
is restricted to a single mode of control. In addition to motion
tracking, many pretrained manipulation policies [15, 16] re-
quire operating in different configuration spaces, such as joint
angles and end-effector positions. This variability highlights
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Fig. 1: HOVER enables versatile humanoid control with a unified
multi-mode command space. The versatile multi-mode command
space supports kinematic position tracking (blue), local joint
angle tracking (yellow), and root tracking (purple). Highlighted
boxes indicate active commands being tracked, while the masks
(dashed boxes on the right) allow selective activation of different
command spaces to accommodate various tasks.

the need for a unified low-level humanoid controller capable
of adapting to diverse control mode configurations.

Since all these modes are applied to a shared hardware
platform, a natural question arises: Can we create a unified
controller that supports all control modes, combining the
strengths of each? This is a non-trivial challenge, as each
mode operates within a distinct command space, making
direct integration impractical. However, despite differences
in control interfaces, the underlying motion objectives often
align: stable, human-like motion for humanoid control.

To this end, we present HOVER, a unified neural controller
for humanoid whole-body control that supports diverse con-
trol modes as shown in Figure 1, including over 15 useful
modes for real-world applications to a 19-DOF humanoid
robot. This versatile command space covers most modes
used in prior works [9, 10, 12, 13]. To ensure a robust
foundation of motor skills that generalize well across tasks,
we train an oracle motion imitator to mimic large-scale hu-
man motion data from MoCap [17], covering a wide variety
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Fig. 2: Overview of HOVER distillation process. The HOVER policy is distilled from the Oracle policy through proprioception and
command masking. The task commands for the student are determined via mode-specific and sparsity-based masks, applied to both upper
and lower body motions independently. These masks generate diverse task command modes, refining the student’s inputs. The distillation
employs DAgger to align the student’s actions with those of the oracle, optimizing through supervised learning on the oracle’s actions.

of movements and control objectives. This design choice
leverages the inherent adaptability and natural efficiency of
human movements, providing the policy with rich motor
priors that can be reused across multiple control modes.
By grounding the training process in human-like motion,
the policy gains a deeper understanding of balance, coor-
dination, and motion control, which are crucial for effective
whole-body humanoid behavior. Through a policy distillation
process, we transfer these motor skills from the oracle
policy into a single “generalist policy” capable of handling
multiple control modes. The resulting multi-mode policy not
only supports diverse control modes but also outperforms
policies trained individually for each mode as shown in
Figure 3. We hypothesize that this is due to the policy
leveraging shared physical knowledge across modes, such as
maintaining balance, human-like motion, and precise limb
control. These shared skills enhance generalization, leading
to better performance across all modes. In contrast, single-
mode policies often overfit to specific reward structures and
training environments, limiting their adaptability. Our multi-
mode generalist policy also enables seamless transitions
between modes, making it both robust and versatile.

To summarize, our contributions are threefold: 1) we
present HOVER, a unified neural controller for humanoid
whole-body control supporting multiple control modes; 2)
we show that, through policy distillation, HOVER effectively
shares motor skills across modes and outperforms individu-
ally trained policies; and 3) experiments in both simulation
and on a real humanoid robot demonstrate that HOVER
achieves seamless transitions between modes and delivers
superior multi-mode control compared to other baselines.

II. METHOD

A. Goal-Conditioned RL for Humanoid Control

We formulate our problem as a goal-conditioned rein-
forcement learning (RL) task, where the policy π is trained
to track real-time human motion. The state st comprises
both the agent’s proprioception sp

t and the target goal state
sg
t . The goal state sg

t provides a unified representation of
the target motion goal, which we will describe in detail in
Section II-B. Using the agent’s proprioception sp

t and the
goal state sg

t , we define the reward rt = R
(
sp
t , s

g
t

)
for policy

optimization. The action at ∈ R19 represents the target joint
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Fig. 3: Comparison between prior work specialists (blue) and our
generalist policy (green) under corresponding modes. The metrics
used are: upper/lower joint error (rad), global/local body position
error (mm), root velocity error (m/s), and root rotation error (rad).
These metrics evaluate how accurately each policy tracks reference
motions and joint configurations across different control modes.

positions, which are fed into the PD controller to actuate
the robot’s degrees of freedom. We employ the proximal
policy optimization (PPO) algorithm [18] to maximize the
cumulative discounted reward E

[∑T
t=1 γ

t−1rt

]
. This setup

is framed as a command-tracking task, where the humanoid
learns to follow the target commands at each timestep.

B. Command Space Design for Humanoid Control

In legged locomotion, root velocity [19] or position track-
ing [20] is a commonly employed command space. However,
focusing solely on root tracking imposes limitations on the
full capabilities of humanoid robots, especially for whole-
body loco-manipulation tasks. We observe that while prior
works [9, 10, 12, 13] have introduced control modes with
varying advantages and disadvantages, each is typically tai-
lored to specific subsets of tasks, thus lacking the flexibility
required for general-purpose humanoid control. In contrast,
our goal is to design a comprehensive control framework that
accommodates a wide range of scenarios and is adaptable to



TABLE I: Command space for priors works on whole-body humanoid control. HOVER covers all the command designs designed by prior
works with a unified command space, and support multi-mode control by tracking arbitrary subsets of the command elements.

Controller Multi-Mode Control Upper-Body Command Lower-Body Command

Kinematic Position Joint Angle Kinematic Position Joint Angle Root
ExBody [12] ✗ ✗ ✓ ✗ ✗ ✓

H2O [10] ✗ ✓ ✗ ✓ ✗ ✗
OmniH2O [9] ✗ ✓ ✗ ✗ ✗ ✗

HumanPlus [13] ✗ ✗ ✓ ✗ ✓ ✓
HOVER (ours) ✓ ✓ ✓ ✓ ✓ ✓

various humanoid tasks. To achieve this, the command space
must be constructed to satisfy the following key criteria:

• Generality: The command space should encompass
most existing configurations, allowing a general-
purpose controller to replace task-specific controllers
without sacrificing performance or versatility. And the
space should be sufficiently expressive to interface
with real-world control devices, including joysticks,
keyboards, motion capture systems, exoskeletons, and
virtual reality (VR) headsets as shown in Figure 1.

• Atomicity: The command space should be composed
of independent dimensions, enabling arbitrary combi-
nations of control options to support various modes.

Based on these criteria, we define a unified command
space for humanoid whole-body control. This space consists
of two primary control regions—upper-body and lower-body
control—and incorporates three distinct control modes:

• Kinematic Position Tracking: target 3D positions of
key rigid body points on the robot.

• Local Joint Angle Tracking: target joint angles for
each robot motor.

• Root Tracking: target root velocity, height, and orien-
tation, specified by roll, pitch, and yaw angles.

In our framework, as shown in Figure 1, a one-hot masking
vector is introduced to specify which components of the
command space are activated for tracking. Recent work on
learning-based humanoid whole-body control [9, 10, 12, 13],
as shown in Table I can be viewed as subsets of our unified
command space, each representing specific configurations.

C. Motion Retargeting

Recent works has shown the advantage of learning robust
whole-body control for humanoid robots from large motion
datasets [9, 10, 12, 13]. The retargeting procedure from
human motion dataset [17] to humanoid motion dataset has
three steps: Step-1: We first compute the keypoints positions
of the humanoid using forward kinematics, mapping its joint
configurations to workspace coordinates. Step-2: Next, we
fit the SMPL model to match the humanoid’s kinematics by
optimizing the SMPL parameters to align with the computed
keypoints from forward kinematics. Step-3: Finally, the
AMASS dataset is retargeted by matching corresponding
keypoints between the fitted SMPL model and the humanoid
with gradient descent. We follow the same motion retargeting
and “sim-to-data” procedure with [10] to convert the large-
scale human motion dataset [17] to dataset Q̂ that only
contains feasible motions for humanoids.

TABLE II: Reward designs for the oracle policy.
Term Weight Term Weight

Penalty
Torque limits −2 DoF position limits −1.25e2

Termination −2.5e2 DoF velocity limits −5e1

Regularization
DoF acceleration −1.1e−5 DoF velocity −4e−3

Lower Action rate −3 Upper Action rate −6.25e−1

Torque −1e−4 Feet orientation −6.25e1

Feet air time 1e3 Feet contact force −7.5e−1

Stumble −1.25e3 Slippage −7.5e1

In the air −2e2 Max feet height per step −3e3

Task Reward
DoF position 3.2e1 DoF velocity 1.6e1

Body position 8e1 Body rotation 2e1

Body velocity 8 Body angular velocity 8
Root velocity 1e2 Root rotation 2e1

D. Oracle Policy Training from Large-Scale Human Motions

State Space Design. We train an oracle motion imitator
πoracle(at|sp-oracle

t , sg-oracle
t ). The proprioception is defined as

sp-oracle
t ≜ [pt,θt, ṗt,ωt,at−1], which contains the humanoid

rigid-body position pt, orientation θt, linear velocity ṗt,
angular velocity ωt, and the previous action at−1. The goal
state is defined as sg-oracle

t ≜ [θ̂t+1 ⊖ θt, p̂t+1 − pt, v̂t+1 −
vt, ω̂t+1 − ωt, θ̂t, p̂t], which contains the reference pose
(θ̂t, p̂t) and one-frame difference between the reference and
current state for all rigid bodies of the humanoid. We use the
same policy network structure with [9], a three-layer MLP
with layer dimensions of [512, 256, 128].

Reward Design and Domain Randomizations. We formu-
late the reward rt as the sum of three components: 1) penalty,
2) regularization, and 3) task rewards, detailed in Table II. We
follow the same domain randomization in [9] to randomize
the physical parameters of the simulated environment and
humanoids for successful sim-to-real transfer.

E. Multi-Mode Versatile Controller via Distillation

Proprioception. For the student policy
πstudent(sp-student

t , sg-student
t ) distilled from the oracle

teacher πoracle, the proprioception is defined as
sp-student
t ≜ [q, q̇, ωbase, g]t−25:t ∪ [at−25:t−1], where q

is the joint position, q̇ is the joint velocity, ωbase is the base
angular velocity, g is the gravity vector, and a is the action
history. Following [9], we stack these terms over the last 25
steps to represent the student’s proprioceptive input.

Command Mask. As illustrated in Figure 2, the task com-
mand input for the student policy is defined using mode-
based and sparsity-based masking. Specifically, the student’s
task command input, sg-student

t , is represented as sg-student
t ≜

Msparsity ⊙
[
Mmode ⊙ sg-upper

t ,Mmode ⊙ sg-lower
t

]
. The mode

mask, Mmode, selects a specific task command mode for



TABLE III: Simulation motion imitation evaluation of HOVER and baselines on dataset Q̂. Metrics that are tracked by different modes
are highlighted in corresponding colors. Results that are statistically significant are highlighted in bold across 5 random seeds.

Kinematic Position Joint Angle Root

Method Survive ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓ Eupper-j ↓ Elower-j ↓ Eroot-vel ↓ Eroot-h ↓ Eroot-r ↓ Eroot-p ↓ Eroot-y ↓

Oracle policy 99.3%±0.203 119±0.442 59.4±0.234 2.63±0.008 5.43±0.024 0.153±0.001 0.206±0.001 0.456±0.002 0.066±0.001 0.065±0.001 0.083±0.001 0.282±0.002

ExBody Mode - Upper: joint angle tracking, Lower: root tracking

ExBody (Specialist) 99.1%±0.212 275±1.650 83.1±0.499 2.63±0.007 6.31±0.034 0.166±0.002 0.243±0.003 0.428±0.007 0.074±0.001 0.070±0.001 0.147±0.002 0.276±0.003

HOVER (Ours) 99.1%±0.220 185±1.110 63.9±0.384 3.01±0.009 6.06±0.033 0.148±0.002 0.210±0.004 0.452±0.006 0.063±0.001 0.068±0.001 0.091±0.001 0.279±0.002

HumanPlus Mode- Upper: joint angle tracking, Lower: joint angle tracking, root tracking

HumanPlus (Specialist) 98.4%±0.259 266±1.597 80.1±0.481 2.53±0.007 6.16±0.033 0.177±0.002 0.222±0.002 0.422±0.006 0.061±0.001 0.080±0.001 0.124±0.001 0.228±0.002

HOVER (Ours) 98.9%±0.285 182±1.093 64.5±0.387 2.85±0.008 5.91±0.032 0.145±0.001 0.211±0.002 0.455±0.007 0.067±0.001 0.069±0.001 0.104±0.001 0.237±0.002

H2O Mode - Upper: kinematic position tracking (left/right hand, left/right shoulder, left/right elbow), Lower: kinematic position tracking (left/right ankle)

H2O (Specialist) 99.2%±0.233 137±0.827 66.3±0.398 2.63±0.008 5.75±0.028 0.177±0.003 0.221±0.002 0.457±0.004 0.078±0.001 0.067±0.001 0.095±0.001 0.415±0.003

HOVER (Ours) 98.9%±0.276 121±0.726 60.6±0.361 2.73±0.008 5.49±0.028 0.158±0.002 0.207±0.002 0.456±0.005 0.065±0.001 0.067±0.001 0.086±0.001 0.365±0.003

OmniH2O Mode - Upper: kinematic position tracking (head, left/right hand), Lower: N/A

OmniH2O (Specialist) 99.0%±0.301 149±0.897 76.4±0.459 2.69±0.007 6.18±0.037 0.199±0.002 0.232±0.003 0.456±0.002 0.071±0.001 0.070±0.001 0.125±0.002 0.306±0.002

HOVER (Ours) 99.0%±0.297 128±0.768 62.5±0.368 2.69±0.008 5.65±0.032 0.162±0.002 0.213±0.002 0.457±0.004 0.065±0.001 0.068±0.001 0.089±0.001 0.310±0.002

the upper and lower body independently. For instance, the
upper body may track kinematic positions, while the lower
body focuses on joint angle and root tracking, as shown
in Figure 2. After the mode-specific masking, the sparsity
mask, Msparsity, is applied. For example, in some scenarios,
the upper body may track only the kinematic positions of
the hands, while the lower body tracks only the joint angles
of the torso. Every bit of the mode and sparsity binary mask
is from a Bernoulli distribution B(0.5). Mode and sparsity
masks are randomized at the episode beginning and remain
fixed until the episode ends

Policy Distillation. We perform policy distillation using
the DAgger framework [21]. For each episode, we roll out
the student policy πstudent(at|sp-student

t , sg-student
t ) in simula-

tion to obtain trajectories of (sp-student
t , sg-student

t ). At each
timestep, we also compute the corresponding oracle states
(sp-oracle

t , sg-oracle
t ). Using these oracle states, we query the

oracle teacher policy πoracle(ât|sp-oracle
t , sg-oracle

t ) to obtain the
reference action ât. The student policy πstudent is then updated
by minimizing the loss function: L = ∥ât − at∥22, where ât
is the reference action from the oracle, and at is the action
taken by the student policy.

III. EXPERIMENT

In this section, we present extensive experimental results
in both IsaacGym [22] and the real-world Unitree H1 [23]
robot to address the following questions:

• Q1: Can HOVER as a generalist policy outperform
policies trained for a specific command configuration?

• Q2: Can HOVER outperform other methods of training
a multi-mode humanoid controller?

• Q3: Can HOVER transfer to real-world hardware and
execute versatile multi-mode control?

Experiment Setup. To answer these questions, we evaluate
HOVER on motion tracking in both simulation (Section III-A
and Section III-B) and real-world settings (Section III-C). In
simulation, we evaluate using the retargeted AMASS dataset

Q̂. In the real world, we test 20 standing motion sequences
focusing on quantitative tracking and locomotion tasks for
qualitative multi-mode control. Our real robot employs a 19-
DOF Unitree H1 platform [23] with a total mass of around
51.5kg and a height of around 1.8m.

Baselines. To address Q1 and Q3, we compare HOVER
with several specialists. As shown in Table I, ExBody [12]
focuses on tracking upper body joint angles and root velocity,
HumanPlus [13] tracks whole-body joints and root velocity,
H2O [10] tracks the kinematic positions of eight keypoints
(shoulders, elbows, hands, ankles), and OmniH2O [9] tracks
the kinematic positions of the head and both hands. We also
compare other useful tracking modes (e.g., left-hand mode,
right-hand mode, two-hand mode, head-only mode). For
each control mode, we provide only the relevant observation
input to the controller and train the specialist baseline with
RL. For instance, in left-hand-only mode, only reference
motion of the left hand is provided. To address Q2, we
compare with another multi-mode RL policy, which follows
the same masking process on the goal commands, but trains
the baseline with RL objective from scratch. During the
multi-mode RL baseline training, mode and sparsity are
randomized at the beginning of each episode and remain
fixed until the episode ends, which is same as the randomized
masking process during distillation.

Metrics. We report survival rate, where the episode ter-
minates if the humanoid hits the ground, not by feet. We
calculate tracking error in terms of kinematic pose, joint
angles, and root twist and rotations. The mean values of
the metrics are computed across all motion sequences from
dataset Q̂. We evaluate policy’s ability to imitate the ref-
erence motion by compare the tracking error of the global
body position Eg−mpjpe (mm), the root-relative mean per-
joint (MPJPE) Empjpe (mm), joint tracking error Ej (rad),
root velocity Eroot-vel (m/s), and root orientation tracking
error Eroot-rpy (rad). To show physical realism, we report
average joint acceleration Eacc (mm/frame2), and velocity



TABLE IV: Comparison between HOVER and specialists. We only
report tracking metrics that are tracked by this mode.

Method Eg-mpjpe-mode ↓ Empjpe-mode ↓ Eacc-mode ↓ Evel-mode ↓

Left Hand Mode - Upper: kinematic position tracking (left hand), Lower: N/A

Specialist 189±1.526 147±1.324 5.82±0.029 11.2±0.089

HOVER (Ours) 138±1.025 151±0.934 5.45±0.031 10.3±0.104

Right Hand Mode - Upper: kinematic position tracking (right hand), Lower: N/A

Specialist 220±1.345 216±1.451 6.77±0.051 12.5±0.152

HOVER (Ours) 128±0.774 141±0.821 5.83±0.049 10.8±0.129

2 Hands Mode - Upper: kinematic position tracking (left-right hands), Lower: N/A

Specialist 137±0.998 145±1.010 5.72±0.037 11.2±0.004

HOVER (Ours) 120±0.901 119±0.827 5.60±0.045 10.1±0.134

Head Mode - Upper: kinematic position tracking (robot head), Lower: N/A

Specialist 186±1.149 104±0.814 2.22±0.008 6.63±0.065

HOVER (Ours) 133±0.849 80.0±0.711 2.31±0.011 6.40±0.029

Evel (mm/frame) error. To better show the correspondence
between control modes and metrics, we highlight the metrics
that are actively tracked by each mode with corresponding
colors in Table III, Table IV and Table V. For instance,
in Table III, upper joint and root metrics are colored with
corresponding mode for ExBody mode.

A. Comparison with Specialists

Comparison with Specialists of Prior Work’s Control
Mode. To address Q1 (Can HOVER as a generalist policy
outperform policies trained for a specific command configu-
ration?), we compare the performance of the same HOVER
policy across different control modes against corresponding
specialist policies. For example, the performance of HOVER
under ExBody mode is evaluated with a fixed mask to match
ExBody mode across the entire dataset Q̂. As shown in
Table III and Figure 3, HOVER consistently demonstrates
superior generalization. In every command mode, HOVER
outperforms prior work specialist controllers in at least 7
out of the 12 metrics, as highlighted by the bold values
in Table III. This consistent advantage across various control
modes underscores the versatility of HOVER. Furthermore,
this means that even when focusing on a single control mode
without considering multi-mode versatility, distilling from an
oracle policy still surpasses RL-trained specialists.
Comparison with Other Specialists of Other Useful Con-
trol Mode. In addition to the aforementioned baselines, we
also evaluate four additional modes: left-hand mode, right-
hand mode, two-hand mode, and head mode. We train four
RL specialists to track these modes individually. The results
in Table IV show that HOVER consistently outperforms
specialists in terms of tracking metrics that are trained for
specific command configurations.

B. Comparison with Other Generalist Training Methods.

To address Q2 (does HOVER outperform other methods of
training an multi-mode humanoid controller?), we compare
HOVER with a multi-mode RL baseline that follows the
same masking process on the commands but trains with
RL objective from scratch. In Figure 4, we assess tracking
error across four metrics: root orientation, upper joint angle,
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Fig. 4: We assess the tracking accuracy of two multi-mode control
policies—HOVER (green) and Multi-Mode RL (purple)—across
eight distinct humanoid control modes. The comparison is visual-
ized across four key performance metrics in the radar charts.
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Fig. 5: Real-World Evaluations on different control modes.

and local and global body positions, measured in eight
different modes. We scale the tracking error via Emax−E(.)

Emax−Emin for
visualization, where larger radar webs indicate better track-
ing performance. The results show that HOVER achieves
consistently lower tracking error across 32/32 metrics and
modes. This performance boost underscores the importance
of distilling from an oracle policy that tracks full-body
kinematics for learning a generalist whole-body controller.

C. Real-World Evaluation

To address Q3 (does HOVER transfer to real-world hard-
ware and execute versatile multi-mode control?), we conduct
quantitative tracking experiments and locomotion tests for
qualitative multi-mode control.
Standing Motion Evaluations. We evaluate HOVER’s per-
formance in the real world by tracking 20 different standing
motions in Q̂. Among these, two motions are visually illus-
trated in Figure 5 (left). The quantitative metrics presented
in Table V demonstrate HOVER’s outperforms specialist
policies in 11 out of 12 metrics. Moreover, we demonstrate
successful tracking of root pitch motion, as shown in the
middle of Figure 5, and full-body kinematic tracking, as
shown on the right of Figure 5, where the robot is capable
of tracking highly dynamic running motions.
Multi-Mode Evaluations. We also evaluate HOVER’s gen-
eralization to locomotion in Figure 6, where we abruptly



TABLE V: Real-world tracking evaluation on 20 standing motions
between prior works specialists and our method. Results that are
statistically significant are highlighted in bold across 5 tests.

Method Eg-mpjpe ↓ Empjpe ↓ Eupper-j ↓ Eroot-rpy ↓

ExBody Mode

ExBody (Specialist) 51.3 ±0.279 39.3 ±0.214 0.131 ±0.001 0.036 ±0.001

HOVER (Ours) 48.9 ±0.470 36.8 ±0.201 0.126 ±0.001 0.032 ±0.001

HumanPlus Mode

Specialist 51.0 ±0.275 36.7 ±0.202 0.128 ±0.001 0.035 ±0.001

HOVER (Ours) 47.4 ±0.359 35.3 ±0.194 0.121 ±0.001 0.038 ±0.001

OmniH2O Mode

Specialist 51.2 ±0.497 42.1 ±0.233 0.153 ±0.002 0.040 ±0.001

HOVER (Ours) 47.5 ±0.261 41.0 ±0.227 0.145 ±0.001 0.037 ±0.001

switch command modes during operation to simulate real-
life scenarios. HOVER successfully transitions from ExBody
mode to H2O mode during forward walking in Figure 6(a),
and from HumanPlus mode to OmniH2O mode while per-
forming turning and backward walking, in Figure 6(b).
Additionally, we conduct a real-test teleoperation demo with
Vision Pro, randomly masking out the positions of the head
and hands. For example, in the middle of Figure 6(c), the
humanoid tracks only the human’s head position, ignoring
the waving hands in head mode. The results demonstrate
that HOVER can smoothly track motions across different
modes, showcasing its robustness for real-world scenarios
(e.g., when there are occlusions in the reference motions).

IV. RELATED WORK

Humanoid Whole-Body Controller. Performing whole-
body control on humanoid hardware is a long-standing chal-
lenge in robotics due to the complex structure of humanoid
robots. Before the rise in popularity of learning-based con-
trollers, classical humanoid controllers [24–33] often use
a hierarchical model-based optimization to solve for the
low-level torque or position commands sent to hardware
motors, where actuator-level dynamics on single joints are
abstracted to multi-joint [26] or whole-body [27] controllers.
Learning-based controllers follow the same design pattern
in spirit, where high-level inputs are translated into low-
level motor commands via neural networks. The design of
controller abstraction and task specification varies by user
needs and applications [34–36]. Recent works on learning-
based humanoid whole-body control [9, 10, 12, 13, 37]
generally have three design patterns for humanoid whole-
body controller: kinematic motion tracking [9, 10, 37], local
joint angle tracking [1, 13], and root velocity tracking [5,
6]. Kinematic motion tracking means tracking the full-body
kinematic motion for each rigid body on the humanoid’s
body, and is heavily inspired by the motion imitation liter-
ature in the graphics community [38–41]. Local joint angle
tracking tracks the local joint angles of the humanoid, which
can be considered a specialized case of kinematic motion
imitation where global position information is discarded.
Root velocity tracking only serves for locomotion ability,
and is used for navigation and terrain traversal of humanoids

Fig. 6: HOVER shows robustness under control mode switches
during locomotion and real-time teleoperation tests.

[5, 6]. One can also combine different control modes for
upper and lower body: for instance, the upper body can be
controlled with local joint angle tracking and the lower body
with velocity tracking [12]. Even within the same kinematic
tracking pattern, the sparsity design varies depending on the
selected keypoints [9, 10]. So far, each of these control
modes is independently developed and are not compatible
with each other. In this work, we aim to unify all of these
control modes.
Unified Neural Whole-Body Controller for Humanoid.
MHC [42] learns multi-mode humanoid controller using
RL from retargeted motion, but does not support arbitrary
subset of chosen modes and is limited to local joint angles
and root tracking. In computer graphics, MaskedMimic [43]
enables multi-mode control with flexible kinematic tracking
constraint by distillation. Other graphics works leverage
reusable motion latent space for downstream flexible con-
trol modes [44–46]. However, additional policies need to
be trained. Also, these efforts have been limited to using
simplified humanoid morphologies that are not applicable in
the real world. In this work, we aim to learn a unified control
policy that can be directly used to control real humanoids
using different control modes.

V. CONCLUSIONS

In this work, we introduced HOVER, a unified neural
controller for humanoid whole-body control that supports
diverse control modes. Through the use of a kinematic
motion imitator and policy distillation, HOVER consolidates
motor skills across multiple control modes into a unified pol-
icy that outperforms specialized controllers. Our evaluations
collectively illustrate HOVER’s ability to handle diverse
real-world control modes, offering and superior performance
compared to specialist policies. Future work will explore
further developing automated mode-switching module for
real-world applications.
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